پژوهش های انجام شده در رابطه با پیشبینی رویگردانی مشتریان در مدیریت ارتباط با مشتری ... |
شکل ۳‑۵: فرایند انتخاب ویژگی در Clementine
-
-
- برخورد با دادههای گم شده[۱۸۳]: پس از حذف ویژگیهایی که مقادیر بسیار زیادی داده گم شده دارند، هنوز مجموعه داده شامل دادههای گم شده است. برای برخورد با این دادههای گم شده با بهره گرفتن از نرمافزار MATLAB سه رویکرد زیر مورد استفاده قرار گرفته است:
-
حذف نمونه: پس از بررسی دادهها، ۳ نمونه شناسایی شد که در بسیاری از ویژگیهای خود دارای مقدار گم شده بودند. این نمونهها پس از شناسایی از مجموعه داده حذف شدند.
جایگذاری با مقدار مد: ویژگی hnd_price در ۱۶ نمونه دارای مقدار گم شده است که در تمامی آنها مقدار مد این ویژگی یعنی ۲۹٫۹۹۰۰ جایگزین شده است.
جایگذاری با مقدار نمونه مشابه: ویژگی change_mou نیز در ۸ نمونه دارای مقدار گم شده است. برای جایگذاری این مقادیر برای هر نمونه، ابتدا مشابهترین نمونه با آن را شناسایی کردیم سپس مقدار ویژگی change_mou نمونه شناسایی شده را جایگزین مقدار گم شده کردیم.
فاز دوم مدل: شناسایی مشتریان با ارزش
پس از پیشبینی و شناسایی مشتریانی که در خطر رویگردانی قرار دارند، شرکت باید تمرکز خود را بر مشتریانی قرار دهد که دارای ارزش بیشتری هستند؛ تا بدین طریق منابع سازمان را به صورت بهینه برای جلوگیری از رویگردانی مشتریان با ارزش اختصاص دهد. در این تحقیق ما برای شناسایی مشتریان با ارزش از میان مشتریان مستعد رویگردانی، به خوشهبندی مشتریان شناسایی شده در فاز اول پرداختیم. برای خوشهبندی از تکنیک شبکه عصبی SOM استفاده کردهایم. همچنین برای تعیین متغیرها برای خوشهبندی، هم از متغیرهای سنتی CRM استفاده کردیم و هم از متغیر استخراج شده از شبکه اجتماعی مشتری؛ تمامی متغیرهای استخراج شده به نوعی متاثر بر ارزش مشتری هستند.
متغیرهای سنتی CRM
ارزش عمر مشتری[۱۸۴] به عنوان معیاری برای تعیین مشتریان باارزش است. مدلهای مختلفی برای محاسبه ارزش عمر مشتری ارائه شده است. در این تحقیق برای استخراج متغیرهای سنتی CRM برای خوشهبندی، از مدل LRFM که توسط چنگ و تیسای ارائه شد (Chang and Tsay 2004)، استفاده میکنیم.
مدل RFM یک مدل رفتار محور برای تحلیل رفتار یک مشتری و سپس پیشبینی کردن بر اساس رفتار مشتریان پایگاه داده است. در این مدل سه مشخصه تاخیر[۱۸۵]، فراوانی[۱۸۶] و مقدار پولی[۱۸۷] به عنوان مبنای ارزشگذاری مشتریان در نظر گرفته میشوند. تاخیر، طول مدت زمان از آخرین خرید را نشان میدهد؛ فراوانی، تعداد خریدها را در یک دوره زمانی مشخص بیان میکند و مقدار پولی، یعنی میزان پول مصرف شده در این دوره زمانی مشخص (Lin, Wei et al. 2011).
چنگ و تیسای مدت[۱۸۸] را به مدل RFM اضافه کردند و آن را به مدل LRFM تبدیل کردند. مدت، دوره زمانی بین اولین بازدید و آخرین بازدید یک مشتری خاص را اندازه میگیرد. مدت به این دلیل به مدل اضافه شد که مدل RFM نمیتواند مشتریانی که ارتباط کوتاه مدت و یا بلد مدت با شرکت داشتهاند را بخشبندی کند. با معرفی مدت به مدل، ارتباط بین مشتریان و شرکت از نقطه نظر عددی مشخص میشود.
در میان دو پایگاه داده مورد استفاده در این تحقیق، دادههای اپراتور تالیا فاقد اطلاعات مربوط به خصیصههای LRFM است. در دادههای مسابقات مدلسازی رویگردانی دانشگاه دوک متغیرهای زیر به عنوان متغیرهای سنتی CRM استخراج شدهاند:
-
- Months: مدت زمان حضور مشتری در شرکت.
-
- Complete-mean: میانگین تعداد تماسهای کامل صوتی و دادهای.
-
- Mou-mean: میانگین ماهانه تعداد دقایق استفاده.
-
- Recv-vce-mean: میانگین تعداد تماسهای صوتی وارده به مشتری.
-
- Rev-Mean: میانگین درآمد ماهانه.
متغیر استخراج شده از شبکه اجتماعی مشتری
برای شناسایی مشتریان با ارزش از دیدگاه رویگردانی فقط در نظر گرفتن متغیرهای سنتی CRM کافی نیست بلکه باید تاثیر وی بر نظر افراد دیگر را نیز مورد توجه قرار بدهیم. ممکن است یک فرد که دارای احتمال رویگردانی بالایی است از نظر مدل LRFM دارای ارزش زیادی نباشد ولی همین فرد دارای ارتباطات موثری در اجتماع باشد و رویگردانی وی تبلیغات منفی کستردهای را برای شرکت در پی داشته باشد. انتشار دهان به دهان خبر و یا تبلیغات در اجتماعی از افراد را با اصطلاح WOM[189] بیان میکنند. لازم است برای بررسی ارزش مشتریان رویگردان علاوه بر متغیرهای سنتی CRM به دنبال استخراج متغیرهای موثر بر WOM نیز باشیم.
واضح است که یک شبکه اجتماعی میتواند از روابط موجود بین اعضای یک خانواده تشکیل گردد و WOM هم از طریق این شبکه تشکیل شده ایجاد گردد. تاثیر WOM منتشر شده درشبکه اجتماعی ناشی از روابط خانوادگی میتواند به صورت بالقوه بسیار زیاد باشد. زیرا اعضای یک خانواده اعتماد زیادی نسبت به یکدیگر دارند و در تصمیمگیریها از یکدیگر کمک میگیرند. ممکن است در یک خانواده چندین نفر از سرویسهای یک شرکت استفاده کنند. در این صورت با نارضایتی و رویگردانی یک نفر از اعضا خانواده ممکن است اعضای دیگر خانواده هم تحت تاثیر قرار گیرند.
در پایگاه داده مربوط به مسابقات مدلسازی رویگردانی دانشگاه دوک متغیری به نام ACTVSUBS وجود دارد که نشان دهنده تعداد مشترکین فعال در خانواده است. به عبارت دیگر، این متغیر بیان میکند که چند مشترک فعال در خانواده یک مشترک وجود دارد. برای مثال اگر این عدد ۲ باشد، آنگاه در این خانواده علاوه بر این مشترک، ۲ مشترک فعال دیگر وجود دارد. این فیلد از دید تحلیل شبکههای اجتماعی برابر با درجه هر گره در شبکه است. یک فرد که دارای مقدار بیشتری برای این متغیر است ارتباطات WOM بیشتری دارد و از دید رویگردانی فردی با ارزش است، چراکه میتواند تعداد افراد بیشتری را تحت تاثیر قرار دهد.
در پایان برای ارزیابی خوشهبندی از معیار دیویس – بولدین[۱۹۰] استفاده کردیم. این شاخص معیاری برای ارزیابی خوشهبندی است که فشردگی و تفکیکپذیری را مورد توجه قرار میدهد و به صورت زیر محاسبه میشود:
که در آن k برابر با تعداد خوشهها است. برابر با فاصله درون خوشهای مربوط به خوشهi است. برابر با فاصله بین خوشه i و j است . خوشهبندی که کمترین مقدار index را داشته باشد مناسبتر است.
نتیجهگیری
ما در این فصل به شرح نحوه پیادهسازی مدل ارائه شده برای پیشبینی رویگردانی مشتریان با ارزش در صنعت مخابرات و انتخاب استراتژی مناسب بازاریابی جهت جلوگیری از رویگردانی این مشتریان کلیدی، پرداختیم. مدل پیشنهادی ما از سه فاز تشکیل شده است که در فاز اول، با طراحی یک سیستم چند دستهبند دقیق که ساختار آن توسط الگوریتم ژنتیک چند بعدی بهینه شده است، به پیشبینی رویگردانی مشتریان پرداختیم. الگوریتم ژنتیک در این فاز سعی در بهینهسازی همزمان در انتخاب ویژگی، انتخاب دستهبند و اوزان تابع ترکیب نتایج دارد.
فرم در حال بارگذاری ...
[یکشنبه 1400-08-16] [ 01:47:00 ق.ظ ]
|